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Abstract 
Photoionization efficiency curves were measured for gas-phase PtC, PtO and PtO2 using tunable 

vacuum ultraviolet (VUV) radiation at the Advanced Light Source.  The molecules are prepared 

by laser ablation of a platinum tube, followed by reaction with CH4 or N2O and supersonic 

expansion.  These measurements provide the first directly measured ionization energy for PtC, 

IE(PtC) = 9.45 ± 0.05 eV.  The direct measurement also gives greatly improved ionization 

energies for the platinum oxides, IE(PtO) = 10.0 ± 0.1 eV and IE(PtO2) = 11.35 ± 0.05 eV.  The 

ionization energy connects the dissociation energies of the neutral and cation, leading to greatly 

improved 0 Kelvin bond dissociation energies for the neutrals: D0(Pt-C) = 5.95 ± 0.07 eV, D0(Pt-

O) = 4.30 ± 0.12 eV and D0(OPt-O) = 4.41 ± 0.13 eV,  as well as enthalpies of formation ΔH0
f, 

0(PtC(g)) = 701 ± 7 kJ/mol, ΔH0
f, 0(PtO(g)) = 396 ± 12 kJ/mol and ΔH0

f, 0(PtO2(g)) = 218 ± 11 kJ/mol.  

Much of the error in previous Knudsen cell measurements of platinum oxide bond dissociation 

energies is due to the use of thermodynamic second law extrapolations.  Third law values 

calculated using statistical mechanical thermodynamic functions are in much better agreement 

with values obtained from ionization energies and ion energetics.  These experiments 

demonstrate that laser ablation production with direct VUV ionization measurements is a 

versatile tool to measure ionization energies and bond dissociation energies for catalytically 

interesting species such as metal oxides and carbides. 

_____________________ 
a) Author to whom correspondence should be addressed; Electronic mail: 
rbmetz@chemistry.umass.edu 
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I. Introduction 

 

Transition metal oxides and carbides have been the subject of numerous experimental and 

theoretical studies.  Much of this interest is due to their relevance to active species in catalytic 

processes such as oxidation of CH4 and CO.  Platinum is also extensively used in the petroleum 

industry as a catalyst for hydrocarbon dehydrogenation, cracking, isomerization and 

aromatization.  This reformation process produces high-octane gasoline from low-octane 

feedstock.1-5  In the gas phase, neutral platinum atoms react readily with ethane and larger 

hydrocarbons and can insert into methane, producing H-Pt-CH3.6-8  The Pt+ cation is even more 

reactive, dehydrogenating methane.9,10  In addition, several transition metal oxide cations, 

including PtO+, can directly convert methane to methanol.  Schwarz and coworkers11,12 describe 

Pt+ catalyzed oxidation of methane, using oxygen as the oxidant: bare Pt+ reacts with methane to 

form PtCH2
+, which then reacts with O2 to regenerate Pt+.  Studies of isolated platinum oxides 

and carbides can aid in revealing the mechanisms and key intermediates of the industrially 

important reactions.  The kinetics and dynamics of the gas-phase reactions can be studied in 

detail, and the thermodynamics, structure and spectroscopy of the reaction intermediates 

measured.12,13  These molecules are challenging to describe with electronic structure theory due 

to the number of unpaired electrons and many low-lying electronic states (often having different 

electron spin states), as well as the difficulty of accurately treating electron correlation and 

relativistic effects.  Thus, an added motivation for detailed experiments on these small molecules 

is to provide accurate thermodynamics, structure and spectroscopy that can be used to evaluate 

electronic structure methods. 

Despite the importance of platinum carbide and oxides, there is little known about their 

thermodynamics.  The only measurements of thermochemical properties of PtC, PtO and PtO2 

are from high temperature mass spectrometry/Knudsen cell and transpiration studies.  As a recent 

comprehensive review14 of these methods points out, they suffer from several potential sources 

of error such as sampling errors and uncertainties in ionization cross sections.  However, the 

most serious problem lies in the extrapolations required to obtain 0 K (Kelvin) enthalpies from 

equilibrium constants measured at ~2000 K.  It is thus critical to use a complementary technique 

to measure bond dissociation energies in these molecules.  Extensive guided ion beam studies 

have measured bond dissociation energies for a wide range of transition metal-containing ions, 
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with typical uncertainties of 5 kJ/mol.15-17  Photodissociation spectra have been measured for 

some ions, and observed dissociation onsets give an upper limit to the bond dissociation 

energies.18  Ionization energies (IE) connect the bond dissociation energies (D0) of the neutral 

and ion in a thermodynamic cycle: 

D0(Pt-X) = D0(Pt+-X) - IE(Pt) + IE(PtX)  (1) 

As IE(Pt) = 8.9588 eV19 is precisely known, measuring the ionization energy of the neutral then 

also determines its bond dissociation energy. 

The dissociation energy of PtC has been measured in two high temperature Knudsen cell 

studies.  Vander Auwera-Mahieu and Drowart20 obtained Do(Pt-C) = 6.30 ± 0.06 eV, while 

Gingerich21 derived a value of 6.27 ± 0.11 eV.  Zhang and Armentrout have used guided ion 

beam experiments to measure the 0 K bond dissociation energy of the cation: D0(Pt+-C)=5.46 ± 

0.05 eV.22 The ionization energy of PtC has not been measured previously, but equation (1) 

predicts IE(PtC) = 9.80 ± 0.08 eV, using Do(Pt-C) = 6.30 ± 0.06 eV. 

There has only been one determination of the enthalpy of formation of PtO, a high 

temperature mass spectrometry/Knudsen cell study by Norman et al.23,24  Based on measurements 

from 1750 to 2050 K, a second-law enthalpy of formation ΔH0
f, 298(PtO) = 439 ± 21 kJ/mol was 

derived.  They also studied PtO2, obtaining ΔH0
f,1900(PtO2) = 153 ± 10 kJ/mol (they estimate ΔH0

f, 

298(PtO2) ≈ ΔH0
f,1900(PtO2)).  This implies bond dissociation energies at 298 K are 3.89 ± 0.22 eV 

for Pt-O and 5.54 ± 0.24 eV for OPt-O.  The Knudsen cell results are in reasonable agreement 

with earlier, indirect measurements on PtO2 using the transpiration method by Schäfer and 

Tebben25 and Alcock and Hooper.26  The thermodynamics of the cations are much better known. 

In a series of guided ion beam studies, Zhang and Armentrout measured the 0 K bond 

dissociation energies of the cations: D0(Pt+-O) = 3.26 ± 0.07 eV and D0(OPt+-O) = 3.06 ± 0.07 

eV.22,27,28 The photodissociation spectrum29 of PtO+ gives an upper limit to the bond dissociation 

energy of 3.164 eV, consistent with the ion beam result.  Equation (1) then predicts IE(PtO) = 

9.59 ± 0.23 eV and IE(PtO2) = 12.03 ± 0.14 eV.  These values are not consistent with the 

electron impact ionization energies of 10.1 ± 0.3 eV for PtO and 11.2 ± 0.3 eV for PtO2 

measured by Norman et al.23  Brönstrup et al.30 observe electron transfer as the major product in 

the reaction of PtO2
+ with C2H4 (IE = 10.51 eV), while it is a very minor product with C2H2 (IE = 

11.40 eV), which implies IE(PtO2) ≤ 11.4 eV.  Direct measurement of the ionization energies of 

PtC, PtO and PtO2 would thus provide accurate thermochemistry for these interesting molecules. 
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 These refractory molecules can only be produced in low concentrations in the gas phase, 

and one photon ionization requires vacuum ultraviolet (VUV) light at approximately 9.5 – 11.5 

eV.  Tunable laboratory VUV sources are often not sufficiently intense to produce the necessary 

ion signals, while resonant two color, two photon ionization (1 + 1' REMPI) is problematic due 

to the low dissociation energies and high ionization energies of the neutrals. As a result, the 

experiments are performed using a synchrotron where tunable VUV is readily available.   

  

II. Experimental Approach 

 

These photoionization experiments are carried out at the Chemical Dynamics Beamline at 

the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory.  The platinum-

containing molecules of interest are produced using a pulsed laser ablation source and are 

ionized using tunable vacuum ultraviolet (VUV) light.  Experiments were carried out at photon 

energies of 8-14 eV, with a typical linewidth of 30 meV.  The ALS produces light in pulses 

separated by only 2 ns, so a high repetition rate ablation source is required to efficiently use this 

essentially continuous light source.  Our previous studies of FeO and CuO used a Nd:YLF 

ablation laser operating at 1 KHz to ablate rods formed of pressed metal oxide powder.31  In the 

studies reported here, platinum oxides are produced by ablating a rotating/translating platinum 

tube (Goodfellow, 99.95% pure) synchronously with a pulse of 10% N2O in He from a 

piezoelectric pulsed valve32 at 2 atm. (1 atm. = 101.3 KPa) backing pressure, while PtC is 

produced using methane, also at 2 atm. backing pressure.  The ablation laser is the 532 nm output 

of a pulsed Nd:YAG laser (Coherent Infinity) operating at 100 Hz repetition rate.  Typical pulse 

energies are 6-10 mJ/pulse, focused to a 80 µm spot with a 35 cm FL lens.   No signal was 

observed with the Nd:YLF laser, presumably because its longer pulse (160 ns vs. 5 ns) and lower 

power (4 mJ/pulse) lead to much less ablation.   

Ions produced by the source are deflected out of the molecular beam, before the skimmer, 

by a set of deflection plates.  Tunable VUV light crosses the neutral molecular beam 9 cm 

downstream of the rotating rod, in the extraction region of a reflectron time-of-flight mass 

spectrometer.  Photoions are extracted with a high-voltage pulse and are collected on a 

microchannel plate detector.  Ion time-of-flight spectra are collected with a multichannel scaler 

card (FAST Comtec 7886).  Detailed descriptions of the photoionization spectrometer have been 
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published previously.33,34  Our previous studies31 of FeO on this instrument show that helium is 

inefficient at cooling the neutrals, which can lead to photoionization efficiency (PIE) curves that 

tail to lower energy.  As a result, we then used O2 as the carrier gas, which leads to very sharp 

onsets, indicating cold ions.  To ensure molecules are thermalized, these studies use 10% N2O in 

helium and pure N2O for PtO and PtO2, obtaining the same onsets with both gas mixes, and pure 

CH4 for PtC.  Figure 1 shows a composite mass spectrum obtained by ablating platinum in 

methane.  Platinum has four major isotopes: 194Pt (33%), 195Pt (34%), 196Pt (25%) and 198Pt (7%).  

The intensities of the mass peaks in the 206-210 amu range differ slightly from those predicted 

from the isotopic abundances, indicating that, in addition to PtC, the source produces small 

amounts of PtCH and PtCH2.  The source also produces PtC2Hx and PtC3Hx, and results on the 

larger compounds will be presented separately.  Photoionization efficiency curves are measured 

by integrating the signal from PtC, PtO and PtO2 as a function of VUV energy and normalizing 

to photon flux.  To avoid interference from PtCH, only signal for 194PtC (m/z=206) is integrated.  

For the oxides, the PIE curves are summed over the major isotopes. 

 

III. Results and Discussion 

A. Photoionization of PtC 

 

 A survey photoionization efficiency (PIE) spectrum of PtC from 8 to 14 eV is shown in 

figure 2a.  Figure 2b shows the results of additional scans taken with a smaller (100 meV) step 

size. The photoionization onset is sharp and occurs at 9.45 ± 0.05 eV. The same onset is obtained 

from data taken at 50 meV intervals.  Zhang and Armentrout have used guided ion beam 

experiments to measure the 0 K bond dissociation energy of the cation: D0(Pt+-C)=5.46 ± 0.05 

eV.22  Combining this value with IE(Pt) = 8.9588 eV and using eq. (1) gives the 0 K dissociation 

energy of the neutral: D0(Pt-C)=5.95 ± 0.07 eV.  Subtracting this value from the enthalpies of 

formation of atomic carbon35 (711.2 kJ/mol) and platinum36 (564 ± 2 kJ/mol) gives the enthalpy 

of formation ΔH0
f, 0(PtC(g)) = 701 ± 7 kJ/mol (Table I).  The dissociation energy of PtC has been 

measured in two high temperature Knudsen cell studies. Vander Auwera-Mahieu and Drowart 

measured the ratio of PtC+/Pt+ (produced by electron impact) as a function of temperature from 

2150-2450 K.  They then obtained D0(Pt-C)=6.30 ± 0.06 eV using the second and third law 

methods.20  A later study by Gingerich21 on ThPt and ThIr found discrepancies with dissociation 
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 6 

energies of PtC and IrC measured by Drowart and coworkers.  He remeasured D0(Pt-C) and 

obtained 6.27 ± 0.11 eV.  The discrepancy with our values, while outside the combined 

uncertainties, is not large, particularly considering the potential error introduced by extrapolation 

to 0 K.  They used the thermodynamic functions for graphite and Pt(g), and derived values for 

PtC(g) based on the ground state spectroscopic parameters. 

In order to determine reasons for the discrepancy, and larger discrepancies observed for 

the platinum oxides, the Knudsen cell experiments were examined in more detail.  Two potential 

sources of error14 in the interpretation of the Knudsen cell data are the assumption that electron 

impact ionization cross sections of Pt and PtC are the same and possible errors in the 

thermodynamic functions for PtC.  Scott and Irikura have shown that, for a wide variety of 

molecules, the binary-encounter Bethe (BEB) method37 correctly predicts the magnitude and 

shape of the cross section, even at energies only a few eV above the ionization energy.38,39  BEB 

cross sections for Pt and PtC are calculated here following the procedure of Scott and Irikura.  

Calculations are carried out with the Hartree-Fock method and the 6-311+G(d) basis on carbon 

and SDD basis and relativistic effective core potential for platinum using Gaussian03.  Kinetic 

energies of orbitals are calculated using the (iop 6/81=3) keyword, and orbital ionization energies 

are calculated with the outer-valence Green’s function (OVGF) method.  Experimental ionization 

energies are used where possible.  At the 75 eV electron energy used in the experiment of 

Vander Auwera-Mahieu and Drowart the calculated cross sections are identical: 7.40 Å2 for Pt 

and 7.39 Å2 for PtC. 

The spectroscopy of PtC has been studied extensively. High-temperature absorption and 

emission studies40-42 determined the ground state to be 1Σ+, with ωe=1051.1 cm-1 and ωexe=4.86 

cm-1.  Vander Auwera-Mahieu and Drowart calculated thermodynamic functions for PtC based 

on a harmonic 1Σ+ ground state with ωe=1051.1 cm-1.  Molecular beam high-resolution laser-

induced fluorescence and Stark spectroscopy studies by Steimle and coworkers43-45 show that PtC 

(X,1Σ+) has a bond length of re = 1.679 Å, and a dipole moment of only 1.09 D.  Including 

vibrational anharmonicity and excited electronic states has a negligible effect on the 

thermodynamic functions for PtC, even at 2300 K, as the lowest excited state of PtC is at 

~12,700 cm-1.  Statistical mechanical thermodynamic functions46 for PtC are given in Table S1 

(supporting information).  This analysis suggests that the discrepancy in D0(Pt-C) between our 

and the Knudsen cell results is not due to incorrect assumptions about the electron impact 
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ionization cross sections of Pt and PtC, or to the use of incomplete thermodynamic functions, 

rather this discrepancy could arise from other factors in the Knudsen cell experiment, such as 

sampling discrimination. 

The first ab initio calculations on PtC were performed by Minaev, who used 

multireference configuration interaction (MRCI), including spin-orbit coupling to characterize 

the excited electronic states responsible for the observed transitions in the visible and near-

ultraviolet.47  The states responsible for the red bands, which were previously thought to be 1Π 

and 1Σ states, were reassigned as the Ω=1 and 0+ sublevels of a 3Π state.  The calculated bond 

length and dipole moment for the ground state are in good accord with experiment.43-45  A 

schematic molecular orbital diagram for PtC, based on the one presented by Minaev, is shown in 

figure 3.  Minaev finds that the ground state is well described (83%) by the configuration 

1σ22σ21π41δ43σ2.   The 3Π0, 1 states, formed by a 3σ → 2π excitation,47 have a dipole moment of 

1.9 D, significantly larger than that of the ground state (1.09 D).45  This indicates that the 2π is a 

carbon-centered, anti-bonding orbital.  The other recent calculation, by Wang et al., used the 

B3LYP hybrid density functional method to calculate spectroscopic parameters, bond 

dissociation energies and ionization energies of the neutrals, cations and anions of the third-row 

transition metal carbides.48  For PtC, they predict a 1Σ+ ground state with re=1.683 Å, ωe = 1097 

cm-1 and a dissociation energy De=5.93 eV (D0=5.86 eV).  The cation is very similar, with 

re=1.676 Å, ωe = 1073 cm-1 and De=5.88 eV (D0=5.81 eV).  The ground state of PtC+ is 2Σ, 

corresponding to the removal of an electron from the non-bonding 3σ orbital of PtC.  The 

calculated ionization energy is 9.39 eV which agrees very well with our result of 9.45 ± 0.05 eV.  

This agreement is largely fortuitous: the calculations overestimate IE(Pt) and D0(Pt+-C) by ~0.35 

eV, and the errors cancel.  The calculations show that there is little geometry change upon 

ionization and this is confirmed in our work by the sharp photoionization onset. 

 

B. Photoionization of PtO and PtO2 

 

Figures 4 and 5 show photoionization efficiency curves for PtO and PtO2.  The ionization 

onset of PtO2 is sharp and occurs at 11.35 ± 0.05 eV, while that of PtO is not as distinct and 

occurs at 10.0 ± 0.1 eV.  The same onsets are obtained from data taken at 50 meV intervals, and 

using pure N2O as the reactant rather than 10% N2O in He.  These values confirm and refine the 
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ionization energies of 10.1 ± 0.3 eV for PtO and 11.2 ± 0.3 eV for PtO2 measured by Norman et 

al. using electron impact.23  Also, the 11.35 eV ionization energy for PtO2 is consistent with the 

observation in the ion cyclotron resonance spectrometer reaction study30 of electron transfer as 

the major product in the reaction of PtO2
+ with C2H4 (IE = 10.51 eV), and as a very minor 

product with C2H2 (IE = 11.40 eV).  

The measured ionization energies of PtO and PtO2 allow the determination of the neutral 

bond dissociation energies from those of the ions using a thermodynamic cycle (eq. 1).  Zhang 

and Armentrout measured the 0 K bond dissociation energies of the cations D0(Pt+-O) = 3.26 ± 

0.07 eV and D0(OPt+-O) = 3.06 ± 0.07 eV from several endothermic ion-molecule reactions in a 

guided ion beam apparatus.22,27,28 The value for PtO+ is consistent with the upper limit of 3.164 

eV from the photodissociation onset.29  The resulting bond dissociation energy D0(Pt-O) is 4.30 ± 

0.12 eV.  For PtO2 the analogue of eq. (1) is 

D0(OPt-O) = D0(OPt+-O) – IE(PtO) + IE(OPtO)   (2) 

and D0(OPt-O) = 4.41 ± 0.13 eV, at 0 K.  The Knudsen cell measurements23,24 give second law 

bond dissociation energies at 298 K of 3.89 ± 0.22 eV for Pt-O and 5.54 ± 0.24 eV for OPt-O.  

The value for Pt-O is low, while that for OPt-O is clearly too high, suggesting possible errors in 

the measurement or analysis.  This will be explored in more detail below.  A more direct 

comparison with the high temperature studies of PtO2 can be obtained by using the guided ion 

beam results for the enthalpy for the insertion of Pt+ into O2: 

 Pt+
(g) + O2(g) → OPtO+

(g) ΔHrxn, 0  = -1.20 ± 0.10 eV  (3) 

From the ionization energies of PtO2 and Pt, one obtains ΔH (0 K) = -3.59 ± 0.11 eV (-346 ± 11 

kJ/mol) for the corresponding neutral reaction.  Adding the enthalpy of vaporization of platinum, 

ΔH0
f, 0(Pt(g)) = 564 ± 2 kJ/mol36 gives the enthalpy of formation of PtO2: 

  Pt(s) + O2(g) → OPtO(g)  ΔH0
f, 0(PtO2(g)) =  218 ± 11 kJ/mol (4) 

Knudsen cell measurements from 1750-2050 K by Norman et al.23,24 give a second law value of 

ΔH0
f,1900(PtO2) = 153 ± 10 kJ/mol; they assume that this value is independent of temperature.  In 

earlier indirect measurements using the transpiration method, Schäfer and Tebben obtain ΔH0
f, 

1430(PtO2) = 168 kJ/mol and estimate ΔH0
f, 298(PtO2) = 173 kJ/mol from measurements from 1380-

1481 K,25 while Alcock and Hooper get ΔH0
f, 1600(PtO2) = 164.4 ± 1.3 kJ/mol from measurements 

from 1370-1820 K.26 These values are all somewhat lower than the 0 K value obtained here using 

the ionization energy and ion thermochemistry (see Table I).  As with PtC, we will assess how 
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electron impact cross sections and thermodynamic functions affect the analysis of the high 

temperature mass spectrometry studies. 

 Norman et al.23 assumed that ionization cross sections for the platinum oxides are 

additive, giving relative cross sections of 1: 1.107: 1.214 for Pt: PtO: PtO2.  Because electron 

impact ionization cross sections are a major potential source of inaccuracy they were examined 

in detail in a critical assessment of high temperature mass spectrometry measurements.  

Measurements for several metal oxides show that the cross sections are not additive, and that 

monoxides typically have ~35% smaller cross sections than the metal, and those of the dioxide 

are smaller still.14  Our calculated (BEB) relative cross sections at the electron energies used by 

Norman et al. are 1: 0.66: 0.86 for Pt: PtO: PtO2.  The relatively large cross section for PtO2 is 

due to the presence of several low-lying orbitals from which an electron can be removed.  The 

revised cross sections increase D0(Pt-O) by 0.14 eV and decrease D0(OPt-O) by 0.03 eV. 

As there was no spectroscopic information available at the time of Norman et al.’s 

experiment, they used generic metal oxide thermodynamic functions for PtO, and did not include 

any temperature corrections for PtO2.  Since then, there have been numerous spectroscopic 

investigations of PtO and PtO2.  Several emission studies have explored the rich electronic 

spectrum of PtO.49-52  The absorption spectra of PtO in a rare gas matrix has been measured to 

characterize its electronic53 and vibrational54,55 states.  Photoelectron spectroscopy of PtO- reveals 

additional low-lying states of PtO.56  The ground state of PtO is the Ω=0+ component (in Hund’s 

case (c)) of a 3Σ- state; the Ω=1 component lies 946 cm-1 higher in energy.  The ground state has 

ωe = 851.07 cm-1 and ωexe = 4.96 cm-1, and a dipole moment of 2.77 D. 43,51  Recently, Cooke and 

Gerry57 and Okabayashi et al.58 have measured the microwave spectrum of PtO.  The rotational 

constants give a bond length re=1.727 Å for PtO.  The most detailed spectroscopic studies of 

PtO2 are the matrix isolation infrared absorption work by Andrews and coworkers.54,55,59 They 

obtain spectra for OPtO and Pt(O2) with 16O and 18O.  For 16OPt16O they observe the bend ν2=157 

cm-1 and antisymmetric stretch ν3=953 cm-1.  They do not observe the symmetric stretch ν1, but 

the ν1+ν3 combination band is at 1838 cm-1.  They do, however observe ν1 at 861 cm-1 for the 

mixed isotopomer 16OPt18O.  This strongly suggests that OPtO is linear, in accord with their 

B3LYP calculations, which predict a 1Σg
+ ground state.  The photoelectron spectrum of OPtO- 

shows a single long progression at 895 ± 30 cm-1, which has been assigned to the symmetric 

stretch.56  These spectroscopic parameters were used to calculate the statistical mechanical 
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thermodynamic functions for PtO and PtO2.  Statistical mechanical thermodynamic functions46 

for PtO and PtO2 are given in Table S1 (supporting information).  This, along with the tabulated 

values36 for Pt(s) are used to calculate third law dissociation energies from the experimental 

measurements by Norman et al. at 2018 K.  The most dramatic changes involve PtO2.  Norman et 

al. obtain ΔH0
f, 1900(PtO2(g)) = 153 ± 10 kJ/mol (the temperature dependence was assumed to be 

small) and an apparent ΔS from the second law calculation of -21 ± 5 J/(mol K).  In contrast, the 

statistical mechanical calculation performed here gives ΔS0
f, 2018(PtO2(g)) = 5.2 J/(mol K).  As a 

result, the revised, third law, value is  ΔH0
f, 0(PtO2(g)) =  212 kJ/mol, which is in excellent 

agreement with the value (218 ± 11 kJ/mol) obtained from the ion energetics and ionization 

energy of PtO2.  The PtO2 pressures measured in the transpiration studies25,26 appear to be too 

high by a factor of ~40, which was also noted by Norman et al.23,24  The 0 K third law bond 

dissociation energies from the Knudsen cell measurements are D0(Pt-O) = 3.94 ± 0.22 eV and 

D0(OPt-O) = 4.88 ± 0.24 eV.  For comparison, the original second law values are 3.89 ± 0.22 eV 

for Pt-O and 5.54 ± 0.24 eV for OPt-O.  The third law values are in reasonable agreement with 

the bond dissociation energies obtained from our measured ionization energies and the ion 

energetics: D0(Pt-O) = 4.30 ± 0.12 eV and D0(OPt-O) = 4.41 ± 0.13 eV. 

Calculations show that the molecular orbital scheme outlined for PtC in figure 3 also 

applies to PtO.  Heinemann et al.60 carried out complete active space self-consistent field (CAS-

SCF) calculations on PtO and PtO+, including spin-orbit effects via a one-electron spin-orbit 

operator.  They predict that the ground state of PtO is the Ω=0 component of a 3Σ- state, with the 

electron configuration 1σ22σ21π41δ43σ22π2, in accord with experiment.  In going from PtC to 

PtO, the measured bond length increases from 1.679 to 1.727 Å, while the vibrational frequency 

decreases from 1051 to 851 cm-1 and the bond dissociation energy drops from 5.95 to 4.30 eV, 

all consistent with the 2π orbital being weakly anti-bonding.  The dipole moment increases from 

1.09 to 2.77 D, indicating that the 2π orbital is primarily oxygen-centered. 

The CAS-SCF calculations predict re=1.792 Å and ωe=719 cm-1, and the discrepancy with 

experiment is consistent with the lack of dynamic electron correlation in the calculation.  Cooke 

and Gerry57 also carried out density functional theory calculations on PtO, approximately 

accounting for relativistic effects using the zero order regular approximation (ZORA) and 

statistical average of orbital potentials (SAOP) methods.  They obtain re=1.7253 Å, ωe=907.6 cm-

1, ωexe=8.17 cm-1 and De=5.38 eV (D0=5.32 eV).  Although the bond length is in excellent 
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agreement with experiment, the vibrational frequency and bond dissociation energy are too high.  

The ground state of PtO+ is produced by removing an electron from the 3σ orbital, leading to a 
4Σ- state with a calculated60 bond length re=1.815 Å.  The Ω=1/2 component is predicted to lie 0.05 

eV above Ω=3/2.  A 4Σ-
3/2 ground state is consistent with rotational structure in the 

photodissociation spectrum of jet-cooled PtO+ measured by Thompson et al.29 who observed 

transitions from the Ω=3/2 component, but not from Ω=1/2.  Unfortunately, the bond length of 

PtO+ could not be determined, as the predissociation lifetime29 results in linewidths of >1 cm-1. 

The similarity in bond length between PtO and PtO+ would lead one to expect a sharp 

photoionization onset.  The observed onset is broader than that of PtC or PtO2.  This could be 

due to unresolved, overlapping transitions to the Ω=3/2 and Ω=1/2 components of the 4Σ- state of 

PtO+.  Simple density functional calculations of IE(PtO) give a wide range of values, from 9.87 

eV (BLYP) to 11.35 eV (B3P86); the B3LYP value of 10.71 eV is 0.7 eV too high.61 

Brönstrup et al.30 carried out a series of calculations assessing the relative stabilities of 

OPtO+ and its isomer PtOO+.  Calculations at the B3LYP level with a modest basis set predict 

that PtOO+ is more stable by ~1 eV; B3LYP calculations with larger basis sets predict they are 

essentially isoenergetic.  On performing much more demanding multi-reference second order 

perturbation theory calculations, OPtO+ is more stable by ~1 eV.  The authors note that this 

should serve as a warning that the popular B3LYP method can substantially underestimate bond 

dissociation energies for some systems (such as OPtO+), while it is quite reliable for related 

molecules such as PtO+ and PtOO+.  As part of their matrix isolation IR study, Bare et al. carried 

out B3LYP calculations on OPtO and PtOO.54  They find that OPtO is linear, with a 1Σg
+ ground 

state, consistent with their infrared spectra. The B3LYP calculations predict that the OPtO 

isomer is 1.50 eV more stable than PtOO.  However, they substantially underestimate the 

stability of OPtO, as the calculated exothermicity for Pt + O2 → OPtO is 2.38 eV, which is 1.21 

eV too low.  So, the OPtO isomer is likely to be ~2.7 eV more stable than PtOO.  The caution 

raised by Brönstrup et al. with respect to OPtO+ appears to also apply to the neutral: B3LYP 

calculations can give erroneous bond dissociation energies for some systems, while they are 

quite accurate for (apparently) similar molecules.  This highlights the necessity for accurate 

thermochemistry for these metal-containing molecules.  Accurate bond dissociation energies of 

the neutrals can be obtained from ionization energies and ion bond dissociation energies.  Older 
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values based on high temperature mass spectrometry can have large errors, especially if they are 

based solely on a second law analysis. 

 

IV. Conclusions 

 

 A laser ablation source, coupled with direct VUV ionization is a versatile technique to 

measure ionization energies for coordinatively unsaturated transition metal oxides and carbides.  

In conjunction with bond dissociation energies for the corresponding ions, the ionization 

energies give bond dissociation energies for the neutrals which are more accurate and precise 

than those obtained using high temperature Knudsen cell mass spectrometry. Third law 

calculations using Knudsen cell data of the enthalpies of formation of PtO2 and bond dissociation 

energies of PtO and OPt-O lead to greatly improved values compared to the original second law 

calculations. 
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Table I.  Experimental ionization energies, enthalpies of formation and bond dissociation 

energies of PtC, PtO and PtO2. 

 

 IE (eV) ΔH0
f,0 (kJ/mol) D0 (eV) a) 

PtC 9.45 ± 0.05 b) 701 ± 7 c) 5.95 ± 0.07 c) 

   6.30 ± 0.06 d) 

   6.27 ± 0.11 e) 

PtO 10.0 ± 0.1 b) 396 ± 12 c) 4.30 ± 0.12 c) 

 10.1 ± 0.3 f) 439 ± 21 g) 3.89 ± 0.22 g) 

   3.94 ± 0.22 h) 

PtO2 11.35 ± 0.05 b) 218 ± 11 c) 4.41 ± 0.13 c) 

 11.2 ± 0.3 f) 153 ± 10 i) 5.54 ± 0.24 g) 

  173 j) 4.88 ± 0.24 h) 

  164.4 ± 1.3 k)  

  212 ± 11 h)  

 

a) For PtO2, D0(OPt-O) 

b) This work. 

c) This work and eq. (1); ion energetics from ref. 22,27,28 and ΔH0
f,0(Pt(g)) from ref. 36. 

d) Knudsen cell.20 

e) Knudsen cell.21 

f) Electron impact.23 

g) Second law value from Knudsen cell measurement, 298 K value.23,24 

h) Third law value, this work, from Knudsen cell data.23 

i) Second law value from Knudsen cell measurements,23,24 assumed independent of temperature. 

j) Second law value from transpiration study,25 298 K value. 

k) Second law value from transpiration study,26 1600 K value. 
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Figure Captions 

 

Figure 1.  Composite mass spectrum obtained from ablating platinum in methane, showing the 

production of Pt, PtC and PtCxHy. This is the sum of mass spectra obtained at several photon 

energies from 11 to 12.8 eV. 

 

Figure 2.  Photoionization efficiency curves for 194PtC: a) survey spectrum with data points 

separated by 200 meV and b) region near the ionization onset with data points every 100 meV.  

The vertical line and error bars indicate the ionization energy of 9.45 ± 0.05 eV, 

 

Figure 3.  Schematic molecular orbital correlation diagram and electron occupancy for PtC (X, 
1Σ). 

 

Figure 4.  Photoionization efficiency curve of PtO.  Data points are separated by 100 meV and 

the vertical line and error bars indicate the ionization energy of 10.0 ± 0.1 eV. 

 

Figure 5.  Photoionization efficiency curve of PtO2.  The vertical line and error bars indicate the 

ionization energy of 11.35 ± 0.05 eV.  Data points are separated by 100 meV. 
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